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NOMENCLATURE 

b, ratio of external and internal radii of the pipe, b’/a’; 

C, = 16Ex Pr; 

B, Eckert Number; 

Pi-, Prandtl Number; 

K ratio of conductivities, K,/K, ; 
k. ratio of diffusivities, k,/k, ; 
K*, conjugation parameter, Jk/K ; 
K:, =1 +K*; 
K:, = (1 - K*)/(l + K*); 
r, non-dimensional radial distance = r’ja’. 

Greek symbols 

7, non-dimensional time, k, t/& ; 
0, non-dimensional temperature, T - T,/T,. 

Subscripts 

0, initial value; 

1, fluid ; 
2, solid. 

INTRODUCTION 

SHAM and Dumore [l] extended the well known Graetz 
problem by taking into account the finite wall resistance. 
Recently some authors [2-51 have studied the effect of wall 
conduction on the conjugated heat transfer in channel flow. 

The wall conduction effect becomes all the more important 
when the thickness of the pipe cannot be discarded in 
comparison with its radius and also when the flux of heat is 
high; a situation particularly encountered in the design of 
compact heat exchangers, concentrating upon the small 
passage size and the increase in heat transferred per unit of 
pumping power. Design problems in nuclear reactors also 
demand the knowledge of temperature distribution in the 
fluid, in which heat is being generated, immediately after the 
energy is released. 

This study deals with unsteady heat transfer to fully 
developed flow in a heat conducting pipe of finite thickness 
when the outer periphery of pipe undergoes a step change in 
heat flux or surface temperature. 

Equations for the temperature distribution in the com- 
posite regions of the fluid and solid coupled through match- 
ing boundary conditions at the interface, are solved by the 
method of Laplace transform, yielding series solutions valid 
for small time periods after the transition has occurred. 

For the problem stated the equations in the non- 
dimensional form are: 

energy equation for fluid [6] 

(1) 

conduction equation for solid 

with initial and boundary conditions 

B,=B,=O forrj0, O<r<b 

and for 7 > 0 

O1 = B,, at r = 1 

80, - = K$, at r = 1 
dr 

and 

d0 
2 = S, (const.), at r = b 
ai- 

or 

0, = S, (const.), at r = b. 

(2) 

(34 

(3b) 

(3c) 

(3d) 

(3e) 

The solutions of equations (1) and (2) under conditions (3) 
are obtained by applying Laplace transform technique. As 
these solutions involve Bessel functions of second kind it is 
unwieldy to get their inversions as such. Following Carslaw 
and Jaeger [7] we expand the functions for large values of the 
Laplace’s parameter and obtain term by term inversion of the 
series. This yields results valid for small values of time. 

Thus the nondimensional temperature distribution in the 
fluid and the solid regions are respectively given by : 

Case (i). Step change in heat flux 

(+ pY 
K:Jr i 

ZS, Jbk (47)“‘A, 
n=0 

- 2CK* i (4+‘A, - C i (- 1)‘(47) 
u=o u=o 

and 

Ki” 
g,= +- 

n=O K:Jr ( 
K:S, Jbk i K$“(4r)“‘B, 

v=o 

- 2CK* c (47)“B3 
W =0 
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+ 4?CK* i [E, + 1621,] 
W=” 

(5) 
Case (ii). Step change in surface temperature 

o, = f (- l)“G 
K:S,,,/berfc(Z,) 

n=O GJr 

- 2cI<* "&(- 1)".(47)3JA, - c ; 47 

u=o 

x [A, + 16tA,] + Cr*r + 2C? 
(61 

- zCK* 2 (-l)r’+& 
w=o 

f 4Crl\‘* ; (B,+lClzS,) 
w=* 3 (7) 

where A’s, B’s are known functions of physical parameters of 
the problem and are given by 

A, = i’erfc(~J:!Jkz), 

B, = i’ erfc (_?I,/2 Jkz), 

2, = b,, for 1 = 1 and b,,, for I = 2, 3,4, 

2, = b,,, for I = 1 and b,,, for I = 2, 3, 4, 

b,, = (2n + l)(b - 1) - Jkfr - l), 

b,,=2(n+u)(b-l)-,/k(r-l), 

b,, = (28 + l)(b - l)- (- l)“‘(r - i)$ 

b,,, = (2n + l)(b - 1) - (- l)‘“(b -r). 

DlSCUSSlON 

Equation (4) gives the contribution of conductional and 
frictional heat towards the development of temperature field 
in the fluid region. Terms occurring with S, are due to 
conduction and are the same as for the fluid at rest, whereas 
those occurring with C are caused by friction. These having 
been denoted by # and J, respectively, the values of #/S, and 
$/C have been depicted for different values of T in Fig. 1. The 
former have their maximum value near the surfacer = 1. This 
is due to dominance of conductance near the wall. The later 
can be seen to have their m~imum around r = 0.8 a little way 
from the wall (in the fluid region) which, for the parameters 
considered, may be a region of highest velocity gradient in the 
fully developed boundary layer. Sample curves have been 
drawn for Case (i) only. Similar curves can however be drawn 
for Case (ii) also. 

Table 1 shows the dependence of the interfacial tempera- 
ture on the conjugation parameter K*, which is the symbolic 
representative of the diffusive and conductive properties of 
both the regions. The temperature is seen to decrease with the 
increase in K* for the parameters \lk = 2,b = 1.2, C = 1 and 
s, = 1. 

Frc;. 1. B, at r = 1. 

Table 1. Variation of interfacial temperature, 8,~ = 1 with 
K* for different values of 5 

K* 
Jr 0.0005 0.005 0.05 0.5 5 

0.1 0.204 0.198 0.164 0.128 0,062 
0.3 1.954 1.923 1.646 0.841 0.284 
0.5 5.204 4,723 4.286 1.624 0.485 
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